Mutational analysis of conserved residues in HhaI DNA methyltransferase.

نویسندگان

  • Umesh T Sankpal
  • Desirazu N Rao
چکیده

HhaI DNA methyltransferase belongs to the C5-cytosine methyltransferase family, which is characterized by the presence of a set of highly conserved amino acids and motifs present in an invariant order. HhaI DNA methyltransferase has been subjected to a lot of biochemical and crystallographic studies. A number of issues, especially the role of the conserved amino acids in the methyltransferase activity, have not been addressed. Using sequence comparison and structural data, a structure-guided mutagenesis approach was undertaken, to assess the role of conserved amino acids in catalysis. Site-directed mutagenesis was performed on amino acids involved in cofactor S-adenosyl-L-methionine (AdoMet) binding (Phe18, Trp41, Asp60 and Leu100). Characterization of these mutants, by in vitro /in vivo restriction assays and DNA/AdoMet binding studies, indicated that most of the residues present in the AdoMet-binding pocket were not absolutely essential. This study implies plasticity in the recognition of cofactor by HhaI DNA methyltransferase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DNA binding affinity of HhaI methylase is increased by a single amino acid substitution in the catalytic center.

The HhaI methyltransferase recognizes the sequence GCGC and transfers a methyl group to C5 of the first cytosine residue. All m5C-methyltransferases contain a highly conserved sequence motif called the P-C motif. The cysteine residue of this motif is involved in catalysis by forming a covalent bond with the 6-position of cytosine prior to methyl group transfer. For the EcoRII methyltransferase,...

متن کامل

Structure of the Q237W mutant of HhaI DNA methyltransferase: an insight into protein-protein interactions.

We have determined the structure of a mutant (Q237W) of HhaI DNA methyltransferase, complexed with the methyl-donor product AdoHcy. The Q237W mutant proteins were crystallized in the monoclinic space group C2 with two molecules in the crystallographic asymmetric unit. Protein-protein interface calculations in the crystal lattices suggest that the dimer interface has the specific characteristics...

متن کامل

Expression of prokaryotic HhaI DNA methyltransferase is transforming and lethal to NIH 3T3 cells.

In neoplastic cells, levels of DNA methyltransferase activity are often increased, and evidence is accruing to suggest an important role for this event in tumorigenesis. To evaluate this possibility further, and to investigate the contribution of increasing de novo, as opposed to maintenance, DNA methylation in mammalian cells, we expressed the bacterial HhaI methyltransferase in cultured murin...

متن کامل

Low-frequency normal mode in DNA HhaI methyltransferase and motions of residues involved in the base flipping.

The results of normal-mode analyses are in accord with the proposal that a low-frequency motion of the HhaI methyltransferase enzyme is responsible for base flipping in bound DNA. The vectors of the low-frequency normal mode of residues Ser-85 and Ile-86 point directly to the phosphate and ribose moieties of the DNA backbone near the target base in position to rotate the dihedral angles and fli...

متن کامل

Nucleoprotein-based nanoscale assembly.

A system for addressing in the construction of macromolecular assemblies can be based on the biospecificity of DNA (cytosine-5) methyltransferases and the capacity of these enzymes to form abortive covalent complexes at targeted 5-fluorocytosine residues in DNA. Using this system, macromolecular assemblies have been created using two representative methyltransferases: M-HhaI and M x MspI. When ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 30 12  شماره 

صفحات  -

تاریخ انتشار 2002